

CONTROLLABLE RENEWABLE ENERGIES: AN ALTERNATIVE TO NUCLEAR POWER

Presentation of results

For Greenpeace Energy e.G.

Fabian Huneke

Brussels, 6. June 2018

ENERGY BRAINPOOL

In cooperation with our customers our experts develop solutions for the Energy Market 3D.

Who are we?

- Independent and neutral
- 20 team members
- 2 managing directors
- Founded in 2003

What are the issues?

- Risks are increasing
- Transformation of energy markets
- Structure of prices fundamentally different

Energy BrainBlog

New business case are unclear

What are the next steps?

- Transformation of heat and mobility sector
- Demand for new capacity
- Investment and financing
- Variety of opportunities

How can we support you?

- Training and simulations
- Analyses and scenarios
- Individual consulting
- Workshops

YouTube

Studies

06.06.2018

Twitter @EnerBrain 🔀 Xing 🛄 LinkedIn

REASON FOR THIS STUDY

 \rightarrow Initial point: Rising need for controllable power generation in the next decades

Berlin, 25 April 2018

A short study for Greenpeace Energy eG

Authors: Fabian Huneke and Philipp Heidinger

NUCLEAR POWER PLANTS (NPPs) IN THE V4-COUNTRIES

Current status of planned NPPs

- Overall, the Visegrad countries (V4) are planning nuclear power plants with a total net output of **15.6 gigawatts.**
- New NPPs could operate until 2065-2095.
- Interesting fact: This corresponds to the German nuclear power plants taken off the grid in 2011-2022.

→ Key question in this study: Besides environmental issues, is this investment economically feasible?

What is an alternative solution?

COST EVALUATION OF NPPs

The average cost of electricity produced in a NPP is largely unknown.

- The fixed costs from the capital tied up in the construction of a new nuclear power plant account for the largest share of its electricity generation costs.
- CAPEX target values for the Flamanville 3 nuclear power project increased from EUR 4 billion (2008) to EUR 10.5 billion (2015)
- Hinkley Point C receives financial support of 119 EUR₂₀₁₆/MWh
- Planned electricity generation costs in V4 countries appear "very ambitious"...

HOW DOEAS AN ALTERNATIVE LOOK LIKE?

1:1 comparision of NPPs and CRE on the basis of LCOE for baseload-production

Fluctuating renewable energies (FRE)

Controllable renewable energies (CRE)

ATOMPROJEKTE OSTEUROPA VS. ERNEUERBARE

1:1 comparision of NPPs and CRE on the basis of LCOE for baseload-production

COST EVALUATION OF CRE

LCOE for a controllable renewable energy system

- Scale of CRE-System: replaces the NPP-capacity and generation
- Optimized share of components: hourly pv-/wind-profiles, national WACC, slightly decreasing CAPEX of wind/pv

	Intermittent electricity				Controllability			
Country Year	Required output from renewables	Share of wind	Share of PV	Power production costs of intermittent renewables	Gas power plant capacity	Electro- lyser capacity	Additional costs of controll- ability	Total costs
	MW	%	%	EUR/MWh	MW	MW_{el}	EUR/MWh	EUR/MWh
HU 2027	12,118	74	26	72.56	2,400	2,866	56.11	128.67
SK 2027	19,019	59	41	89.74	2,400	3,699	77.49	167.23*
CZ 2035	24,167	72	28	74.06	4,800	6,201	45.01	11.08
PL 2035	30,872	79	21	69.83	6,000	8,470	41.90	111.73
V4 2027	85,678	77	23	67.09	15,600	16,808	53.08	120.17
V4 2035	84,233	71	29	60.36	15,600	21,534	39.66	100.02

*) Due to very limited experience with wind power in Slovakia, actual wind potential has not been sufficiently studied and a very low level of potential has been assumed in these calculations.

In nationally optimized scenarios, CRE is predominantly competitive with nuclear power plants

In transnational optimized scenarios, seE tend to be cheaper than new, current nuclear power plants in Europe

Fabian Huneke Energy Brainpool GmbH & Co. KG Brandenburgische Straße 86/87 10713 Berlin Tel.: +49 (0)30 76 76 54-10 Fax: +49 (0)30 76 76 54-20 www.energybrainpool.com kontakt@energybrainpool.com